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Abstract Generic semi-analytical energy gradients are de-
rived and implemented for NDDO-type methods, by using
numerical integral and Fock matrix derivatives in the con-
text of an otherwise analytical approach for configuration
interaction (CI) and other non-variational treatments. The
correctness, numerical precision, and performance of this hy-
brid approach are established through comparisons with fully
numerical and fully analytical calculations. The semi-analyt-
ical evaluation of the CI gradient is generally much faster than
the fully numerical computation, but somewhat slower than
a fully analytical calculation, which however shows the same
scaling behavior. It is the method of choice whenever a fully
analytical CI gradient is not available due to the lack of analyt-
ical integral derivatives. The implementation is generic in the
sense that it can easily be extended to any new NDDO-type
Hamiltonian. The present development of a semi-analytical
CI gradient will facilitate studies of electronically excited
states with recently proposed NDDO methods that include
orthogonalization corrections.

1 Introduction

The established NDDO-type semiempirical methods MNDO
[1], AM1 [2], and PM3 [3] have been applied extensively
to study the ground-state properties and reactions of large
molecules [4–6]. These methods possess a very simple and
regular structure of the one-electron Hamiltonian and the
two-electron integrals, which facilitates analytical evaluation
of energy derivatives. As a result, energy gradients can be
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computed in a computationally very efficient manner for both
variational [7,8] and non-variational [8–10] wavefunctions,
based on these Hamiltonians.

The more recent NDDO-type approaches with orthog-
onalization corrections (OM1 [11,12], OM2 [13,14], and
OM3 [15]) have been designed to overcome some of the
well-documented deficiencies [4–6] of the older methods.
These approaches have significantly improved the descrip-
tion of conformational barriers and electronically excited
states. However, these advances come at the cost of more
intricate expressions for both the one-electron Hamiltonian
and the two-electron integrals. This complexity makes a fully
analytical gradient implementation in OMx methods a daunt-
ing and error-prone task.

Computationally efficient, semi-analytical energy gradi-
ents of variational OMx self-consistent field (SCF) energies
are available [13]: they are computed from the given con-
stant density matrix and numerical integral derivatives. How-
ever, in all non-variational treatments, including half-electron
open-shell Hartree–Fock [16] and configuration interaction
(CI), the gradient can only be evaluated numerically so far, by
finite differences of total energies. The lack of fast CI gradi-
ents is particularly restrictive for GUGA-CI [10] calculations
of excited states, which constitute one of the most promising
application areas for OMx methods.

The goal of this work is to derive and implement a generic
semi-analytical approach to energy gradients for non-varia-
tional NDDO-type wavefunctions. The implementation will
employ numerical integral and Fock matrix derivatives in
the context of an otherwise analytical approach, and will
therefore necessarily be less efficient than fully analytical
techniques. On the other hand, this strategy leads to a great
simplification of computer programming, and enables rapid
implementation of fast semi-analytical gradients. The result-
ing code can almost trivially be extended to other NDDO-type
Hamiltonians that might become available in the future.

The rest of this paper is organized as follows: Section 2
gives the generic expressions for CI energy derivatives in
NDDO methods, and outlines their implementation in a
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computer program. The asymptotic scaling of this implemen-
tation is examined and compared with fully numerical and
fully analytical approaches. Section 3 discusses the numer-
ical precision and computational performance of the new
technique. Finally, Section 4 provides some conclusions and
perspectives.

2 Methods and implementation

In all NDDO-type methods, the total CI energy of a system of
nuclei and electrons is given by the sum of the core repulsion
energy Ecore and the electronic energy consisting of an SCF
contribution ESCF and a CI contribution ECI.

Etot = Ecore ({xi}) + ESCF
({xi}, {Pµν}

)

+ECI
({xi}, {�r}, {�pqrs}

)
, (1)

where {xi} are Cartesian coordinates of the nuclei, {Pµν} are
elements of the electron density matrix, {�r} are weights of
one-electron states in the CI state of interest, and {�pqrs} are
elements of the CI two-particle density matrix. The expres-
sion for the half-electron energy [8] can be cast into the
same form. Because total energy expressions for NDDO-type
methods are well documented elsewhere [4], we shall here
only give the equations necessary to unambiguously establish
the notation.

The core repulsion energy Ecore does not depend (explic-
itly or implicitly) on the electronic structure. It is understood
to include any constant reference energies or force-field cor-
rections that might be introduced in a particular approach.
The SCF contribution ESCF represents the electronic energy
of the variationally optimized, single-determinantal refer-
ence state. This term is a quadratic function of the electron
density matrix:

ESCF = 1

2
Tr {(H + F) · P} , (2)

where Tr stands for the matrix trace operation. The one-elec-
tron Hamiltonian matrix H is an explicit function of the nu-
clear coordinates. The elements of the Fock matrix F are
linear functions of the density matrix, so that:

Fµν = ∂ESCF

∂Pµν

. (3)

The one-particle density matrix in Eq. (2) is subject to the
commutation and idempotency conditions:

F · P − P · F = 0 , (4)

P · P − P = 0 , (5)

where the NDDO approximation is assumed to hold for the
overlap matrix: Sµν = δµν .

Finally, the CI energy term ECI collects all contributions
which are not variational with respect to the SCF density
matrix P, or have non-trivial dependence on the two-particle
density � [9]:

ECI =
active∑

r

�rεr +
active∑

pqrs

�pqrs(pq|rs) , (6)

where the coefficients �r and �pqrs do not explicitly depend
on the nuclear coordinates; εr and (pq|rs) denote the eigen-
values of the Fock matrix and the two-electron integrals in
the basis of molecular orbitals (MOs), respectively.

Analytical differentiation of the closed-form core repul-
sion contribution to the total energy is a straightforward appli-
cation of the chain rule. Alternatively, this derivative can be
calculated using a finite-difference numerical expression. To
remain consistent with the treatment of one- and two-elec-
tron integrals, we choose to evaluate this contribution numer-
ically.

Differentiation of Eq. (2) with respect to a nuclear coor-
dinate xi gives [17]:

dESCF

dxi

= 1

2
Tr

{(
∂H
∂xi

+ ∂F
∂xi

)
· P

}
. (7)

Contributions containing derivatives of the density matrix P,
which would arise upon formal differentiation of Eq. (2),
vanish due to the idempotency condition (Eq. 5). The inte-
gral derivatives in Eq. (7) can be determined by numerical
differentiation of the matrix (H + F), which can be provided
by a minor modification of the Fock matrix routine.

The remaining ingredient in the total energy expression
is the CI energy ECI. Evaluation of the corresponding deriva-
tives requires calculation of wavefunction response, obtained
from the solution of Coupled-Perturbed Hartree-Fock (CPHF)
equations. Using the Z-vector [18] approach, the derivatives
can be expressed as [8,9]:

dECI

dxi

=
active∑

pqrs

�pqrs

∂

∂xi

(pq|rs) + Tr

{
∂F
∂xi

· Z
}

. (8)

In Eq. (8), the first term is the “static” part of the derivative,
and the second term is the “response” part. The derivatives
of the two-electron integrals ∂

∂xi
(pq|rs) and the Fock matrix

∂F
∂xi

can be evaluated by numerical differentiation. Because
all NDDO-type methods neglect three- and four-center two-
electron integrals, differentiation can be performed in mem-
ory, without resorting to secondary storage or integral-direct
approaches. Finally, calculation of the Z-vector requires only
knowledge of the two-electron integrals, MO coefficients,
and CI state parameters (�r and �pqrs). The CPHF equa-
tions are solved using the approach described previously [8],
without any modification of the computer program.

In combined quantum mechanical / molecular mechani-
cal (QM/MM) calculations, the electrostatic QM/MM inter-
actions usually involve fixed MM point charges. Since the
MM atoms do not carry basis functions, they affect only the
one-electron part of the Hamiltonian. For the MM atoms,
the expression for the SCF gradient, Eq. (7), thus reduces to:

dESCF

dxi

= Tr

{
∂H
∂xi

· P
}

. (9)

When evaluating the gradient for the QM atoms, the one-elec-
tron QM/MM electrostatic contributions are easily included
in the derivatives appearing on the right-hand sides of Eqs.
(7) and (8). The presence of an external point-charge field
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affects the response part of the CI gradient indirectly, through
the SCF orbital coefficients. Our current implementation of
semi-analytical gradients covers external point charges in the
manner outlined above. Therefore, like our previous fully
analytical approach [9], it can be applied in QM/MM calcu-
lations with electrostatic embedding [19].

The semi-analytical gradient evaluation employs numer-
ical computation of the integral and Fock matrix derivatives
in Eqs. (7) and (8). It is straightforward to accomplish this
task by central finite-difference techniques using the exist-
ing routines for calculating the one- and two-electron inte-
grals and for building the Fock matrix with a given con-
stant density. Such a naive implementation is inefficient, how-
ever, because most of the integrals are not changed when
displacing one particular atom in order to compute a partic-
ular Cartesian gradient component by finite difference. It is
clearly sufficient to calculate only the affected integrals, i.e.,
those involving basis functions at the displaced atom. In the
case of NDDO-type methods with only one- and two-center
contributions to the energy (e.g., MNDO, AM1, PM3, and
OM1), the computational cost for each Cartesian gradient
component will then only scale with the number of atoms
(Nat), and the cost for all required numerical integral and
Fock matrix derivatives will scale as O(N2

at). In the case of
the more recent approaches with three-center orthogonaliza-
tion corrections (OM2 and OM3), the corresponding overall
effort will increase as O(N3

at); it should be noted, however,
that all three-center energy contributions in OM2 and OM3
involve products of integrals that decrease exponentially with
increasing distance, and therefore screening procedures can
be applied to improve the scaling behavior in this part of the
computation if needed.

We now address the overall asymptotic computational
cost of an energy and gradient evaluation at the OM2-CI
level, which represents the most demanding case (see above).
In Table 1, we compare the cost of a fully numerical calcu-
lation, the current semi-analytical approach, and a hypothet-
ical “optimal” analytical implementation (not yet available)
that exploits properties of the low-level integrals to reduce
the amount of work. The two possible asymptotic scaling
regimes are:

(A) The number of CI configurations (NCSF) is small, and
does not increase with the number of atoms (Nat).

(B) The number of CI configurations is large, and increases
linearly (or faster) with the size of the system.

In the first case (A), the major time-consuming steps
are the evaluation of the integrals over the basis functions
and of their derivatives (always needed) as well as matrix
diagonalization (only in the fully numerical approach). The
fully numerical OM2-CI gradient will thus scale as O(N4

at),
whereas the analytical and semi-analytical approaches should
exhibit an O(N3

at) scaling.An optimum analytical implemen-
tation will be faster because of a smaller pre-factor.

A different scaling behavior is found in the case B, which
is realized for calculations on excited states in larger con-
jugated molecules. In this case, CI energy evaluation may

be dominated by the computation of the GUGA-CI coupling
coefficients or by the iterative diagonalization of the CI ma-
trix, which are essentially both of order O(N2

CSF) (formal
scaling, worst case), so that the numerical CI gradient calcu-
lation scales asO(N2

CSFNat). Both the generic semi-analytical
and the optimal analytical routines scale as O(N3

at), and have
the same pre-factor.

Overall, our generic semi-analytical implementation is
thus expected to be much faster than the fully numerical eval-
uation under all circumstances, and to approach the perfor-
mance of an optimal analytical implementation for larger CI
spaces.

Finally, the memory requirements are the same for ana-
lytical and semi-analytical gradient evaluations, because the
finite-difference calculations can utilize the same arrays as
standard energy evaluations. Moreover, the results from the
calculation at the first displaced geometry (core Hamilto-
nian, Fock matrix, and two-electron integrals) can be stored
in the standard arrays for the corresponding derivatives, be-
fore combining them with the results at the second displaced
geometry, which yields the needed derivatives.

3 Precision and performance

We have tested our implementation of generic semi-analytical
gradients in SCF and CI calculations using six semiempiri-
cal methods (MNDO, AM1, PM3, OM1, OM2, and OM3).
Here, we shall present only some of the results obtained. We
shall focus on AM1 and OM2 as representative examples of
NDDO-type methods without and with three-center energy
contributions, respectively. Unless noted otherwise, we have
not applied any screening for the three-center terms in OM2
(see above).

The first issue is the precision of the computed gradients.
To avoid any significant errors from SCF convergence in the
tests on precision, we have used tight SCF convergence cri-
teria, 10−12 eV for the electronic energy and 10−12 for the
SCF density matrix. In the fully numerical gradient calcu-
lation, the step size DELTA in Cartesian coordinates was
varied between 10−2 and 10−6 Å. Likewise, in the semi-ana-
lytical approach, the Cartesian step size DSTEP for numeri-
cal computation of integral and Fock matrix derivatives was
varied between 10−3 and 10−6 Å. Finally, the analytical gra-
dient code [8,9] controls the numerical precision (e.g., for
solution of the CPHF equations) by a global option DPREC
which was varied between 10−4 and 10−8 au.

Taking the SCF gradient of ethylene as an example, we
find that each of the three approaches to gradient evalua-
tion converges for tighter (decreasing) values of DELTA,
DSTEP, and DPREC, respectively. Convergence of better
than 10−7 au (typically 2×10−8 au) is observed for the Carte-
sian gradient norm with DELTA = 10−4 Å, DSTEP = 10−4 Å,
and DPREC = 10−6 au. More importantly, all available ap-
proaches converge to the same result when using tight conver-
gence criteria: for the chosen input geometry of ethylene, an
identical AM1-SCF Cartesian gradient norm of 0.05747541
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Table 1 Computational complexity of OM2-CI calculations: comparison of numerical, semi-analytical, and optimal analytical gradientsa

SCF+CI energy

1-electron Hamiltonian O(N3)

2-electron part of the Fock matrix O(N2
atm

4)

Matrix diagonalization O(N3)

Computation of CI coupling coefficients O(N2
CSF)b

Iterative diagonalization of CI Hamiltonian O(N2
CSF)b,c

Overall O(N3) + O(N2
CSF)

Gradient Numerical Semi-analytical
and analytical

1-electron Hamiltonian derivativesd O(N3)

2-electron integral derivativesd O(N2
atm

4)

Solution of the CPHF equations O(N3)

Evaluation of the CI response contribution O(NatN
2)

Overall O(NatN
3) + O(NatN

2
CSF)e O(N3)

aN = Natm is the number of basis functions; Nat is the number of atoms; NCSF is the number of CI configurations; m is the average number of
basis functions per atom
bFormal scaling, worst case
cThis estimate is based on the assumptions that one CI state is computed and that the number of Davidson iterations is independent of the size of
the molecule or the dimension of the CI problem
dGradient terms appearing in Eqs. (7) and (8) are calculated independently in our semi-analytical implementation, so that all integral derivatives
are evaluated twice. Without knowledge of the low-level structure of the Hamiltonian matrix elements, storage requirements needed to eliminate
the second integral pass would exhibit undesirable cubic scaling with the number of atoms
eAn SCF+CI calculation is performed for each of the 6Nat displacements

Table 2 Computation times (seconds) for minimal-CI energy and gradient of condensed aromatic compounds on one processor of a 2.0 GHz
dual-Opteron system with 8 Gb of main memory

AM1 OM2

SCF+CI CI gradient SCF+CI CI gradient

Energy Analytical Hybrid Numerical Energy Hybrid Numerical

C10H8 0.01 0.01 0.02 0.51 0.01 0.19 0.68
C32H14 0.17 0.11 0.53 25.10 0.17 3.48 30.22
C66H20 1.29 0.71 3.91 330.33 1.43 24.99 390.77
C112H26 6.87 3.10 17.70 2750.09 7.45 111.98 3293.88
C170H32 27.93 11.30 58.72 15859.74 28.03 388.96 18879.33

au is obtained from independent numerical, semi-analytical,
and analytical calculations. In the case of OM2-SCF, the fully
analytical gradient has not yet been implemented, but the
other two approaches again yield the same Cartesian gradi-
ent norm of 0.06893268 au and thus agree to within 10−8 au.
These and other tests confirm that our implementation of
generic semi-analytical gradients is correct.

The performance of the new code has been studied using
the default options for precision: SCF convergence criteria
of 10−9 eV for the electronic energy and 10−9 for the SCF
density matrix, DELTA = 10−4 Å, DSTEP = 2 × 10−4 Å, and
DPREC = 10−6 au (see above). We have focused on CI gra-
dients which are expected to represent typical applications
of the new code, and we have chosen the same test cases
as in our previous work, namely minimal CI calculations on
condensed aromatic hydrocarbons [9] and more extensive
GUGA-CI calculations on n-acenes [10]. These two types of
calculations correspond to the scaling regimes (A) and (B),
respectively (see above).

Table 2 shows AM1 and OM2 timings for minimal CI
calculations. Here, the time for the energy evaluation is dom-

inated by the SCF part since the minimal 3 × 3 CI treatment
[9] only requires negligible effort. The fully analytical AM1-
CI gradient is faster than the semi-analytical AM1-CI gra-
dient (“hybrid” in Tables 2–5) by a factor of about 5, but
shows the same scaling behavior for increasing molecular
size. The fully numerical AM1-CI gradient is much slower,
by more than two orders of magnitude for the larger sys-
tems. As expected from scaling considerations (see above),
the fully numerical OM2-CI gradient is also much slower
than its semi-analytical counterpart, by a factor of about 50
for the largest case (C170H32). Comparing the AM1 and OM2
timings, it is obvious that the energy evaluation, and conse-
quently also the fully numerical gradient evaluation, require
similar computational effort. The computation time for the
semi-analytical CI gradient is larger in OM2 than in AM1
(here typically by a factor of 6), which reflects the need to
compute the three-center energy contributions in OM2 that
are absent inAM1.As pointed out before, this part of the OM2
calculation can be accelerated through screening techniques.
For example, in the case of C170H32, the computation time
for the semi-analytical OM2-CI gradient drops from 389 s
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Table 3 Computation times (seconds) for 5–5′ full-CI energy and gradient for the lowest 1B2u state of n-acenes on one processor of a 2.0 GHz
dual-Opteron system with 8 GB of main memory

Molecule Active Number of AM1 OM2

π -MO CSFs SCF CI CI gradient SCF CI CI gradient

space Energy Energy Analytical Hybrid Energy Energy Hybrid

C10H8 5-5′ 4816 0.01 2.92 0.04 0.05 0.01 2.91 0.22
C14H10 5-5′ 4816 0.01 2.96 0.07 0.10 0.02 2.87 0.50
C18H12 5-5′ 4816 0.03 2.85 0.11 0.17 0.04 2.90 0.96
C22H14 5-5′ 4816 0.06 2.87 0.17 0.31 0.06 2.90 1.66
C26H16 5-5′ 4816 0.10 3.00 0.24 0.51 0.10 2.96 2.62

Table 4 Computation times (seconds) for MR-CISD energy and gradient for the lowest 1B2u state of hexacene with active π -MO spaces of
different size, calculated on one processor of a 2.0 GHz dual-Opteron system with 8 GB of main memory

Molecule Active Number AM1 OM2

π -MO of SCF CI CI gradient SCF CI CI gradient

space CSFs Energy Energy Analytical Hybrid Energy Energy Hybrid

C26H16 5-5′ 358 0.10 0.16 0.25 0.51 0.10 0.16 2.61
C26H16 7-7′ 1754 0.10 0.72 0.59 0.88 0.10 0.67 2.99
C26H16 9-9′ 5522 0.10 3.14 1.48 1.73 0.10 3.00 3.86
C26H16 11-11′ 13480 0.10 10.63 3.51 3.68 0.10 10.54 5.77
C26H16 13-13′ 27986 0.10 32.65 7.83 7.96 0.10 29.26 10.05

Table 5 Computation times (seconds) for MR-CISD energy and gradient for the lowest 1B2u state of n-acenes with all π MOs in the active
space, calculated on one processor of a 2.0 GHz dual-Opteron system with 8 Gb of main memory

Molecule Active Number AM1 OM2

π -MO of SCF CI CI gradient SCF CI CI gradient

space CSFs Energy Energy Analytical Hybrid Energy Energy Hybrid

C10H8 5-5′ 362 0.01 0.06 0.04 0.06 0.01 0.06 0.23
C14H10 7-7′ 1770 0.01 0.60 0.19 0.22 0.02 0.60 0.62
C18H12 9-9′ 5548 0.03 2.83 0.74 0.85 0.04 2.80 1.62
C22H14 11-11′ 13503 0.06 10.57 2.59 2.72 0.06 10.27 4.06
C26H16 13-13′ 27986 0.10 32.65 7.83 7.96 0.10 29.26 10.05

to 303 s when neglecting tiny three-center terms by apply-
ing an overlap cutoff criterion of 10−10, which changes the
computed Cartesian gradient norm by only 2 × 10−8 au. It
should be stressed, however, that even without such screen-
ing and in spite of the fact that the tests in Table 2 fall into the
unfavorable scaling regime (A), the semi-analytical OM2-CI
gradient is much more efficient than a fully numerical one,
which is the only available alternative.

Moving to more extensive CI calculations [10] and hence
to scaling regime (B), Table 3 gives AM1 and OM2 timings
for full CI calculations on n-acenes using an n-n′ active space
with n = 5 highest occupied π MOs and n′ = 5 lowest
unoccupied π MOs, which gives rise to 4816 configuration
state functions (CSFs) for the lowest 1B2u state (D2h symme-
try). Tables 4 and 5 list analogous timings for multi-reference
MR-CISD calculations with single and double excitations
for active spaces of increasing size (up to 27986 CSFs), for
hexacene and a series of n-acenes, respectively. Timings for
fully numerical CI gradient calculations are not presented in
these tables, but they require 6Nat energy evaluations and will
therefore be slower than a CI energy evaluation by approxi-
mately this factor (not taking into account that CI energy cal-

culations at distorted geometries with lower symmetry will
take longer than those at the D2h reference geometry). It
is obvious at first sight that the time for the energy eval-
uation is dominated by the CI part in all these examples.
The fully analytical computation of the AM1-CI gradient is
generally much faster than the AM1-CI energy evaluation.
This is also true for the semi-analytical AM1-CI gradient in
almost all cases, except for the smallest MR-CISD calcu-
lations (see Tables 4 and 5). The semi-analytical AM1-CI
gradient is slightly slower than its fully analytical counter-
part, but the differences in the timings tend to vanish with
increasing number of CSFs, as expected from general scal-
ing considerations (see above): for example, in the MR-CISD
calculations for hexacene with 27986 CSFs, the correspond-
ing computation times are 7.96 and 7.83 s (see Table 4). The
semi-analytical CI gradient is usually somewhat slower in
OM2 than in AM1 (due to the need to evaluate the additional
three-center terms), but the difference is not pronounced and
diminishes with increasing CI spaces. More importantly, the
semi-analytical OM2-CI gradient calculation takes less time
than the OM2-CI energy evaluation for most of the examples
in Tables 3–5, except for the smallest MR-CISD cases. This



Generic implementation of semi-analytical CI gradients for NDDO-type methods 89

confirms that this approach is indeed efficient in the scaling
regime (B), as expected, and is clearly preferable to a fully
numerical gradient evaluation, which requires 6Nat OM2-CI
energy evaluations.

4 Conclusions

Generic semi-analytical energy gradients have been imple-
mented for non-variational NDDO-type wavefunctions, using
numerical integral and Fock matrix derivatives in the con-
text of an otherwise analytical approach. The correctness and
numerical precision of this approach have been established
by comparisons with fully numerical and (if available) fully
analytical gradient calculations. The semi-analytical CI gra-
dients have been shown to be much faster than fully numeri-
cal CI gradients, and they are therefore the method of choice
whenever a fully analytical CI gradient is not available due
to the lack of analytical integral derivatives. For large CI
spaces, the semi-analytical treatment even approaches the
performance of a fully analytical treatment.

Applications of the methods with orthogonalization
corrections (OM1, OM2, OM3) will benefit most from the
present development. With the availability of an efficient
semi-analytical CI gradient, these methods can now be em-
ployed in explorations of excited-state potential energy

surfaces and studies of photochemistry in larger organic
molecules, and corresponding applications to enzymes will
be possible in the framework of QM/MM methods.
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